Vorlesung 9a

Markovketten

Teil 1

Markovketten als spezielle mehrstufige Zufallsexperimente

(Buch S. 94)

Zur Erinnerung:

Bei mehrstufigen Zufallsexperimenten

hat man für jedes $i = 1, 2, \dots$

Übergangswahrscheinlichkeiten

$$P(a_1 \dots a_i, a_{i+1}) = P_{a_1 \dots a_i}(X_{i+1} = a_{i+1}),$$
 die angeben,

mit welcher Wahrscheinlichkeit in der (i + 1)-ten Stufe das Ereignis $\{X_{i+1} = a_{i+1}\}$ eintritt,

gegeben das Eintreten von $\{X_1 = a_1, \dots, X_i = a_i\}$.

Eine wichtige Beispielklasse mehrstufiger Zufallsexperimente:

alle X_i haben ein-und denselben Wertebereich S und die Übergangswahrscheinlichkeiten der nächsten Stufe hängen nur von der aktuellen Stufe ab (und nicht von den vorhergehenden):

$$P(\ldots a_{i-2} a_{i-1}, a_i) = P(a_{i-1}, a_i)$$

In dem Fall spricht man von einer **Markovkette** auf dem Zustandsraum S mit Übergangsmatrix P.

Die Stufen sind jetzt mit $i=0,1,2,\ldots$ indiziert. Man denkt sich die Übergangsmatrix P als fest und notiert die Verteilung ρ von X_0 (die "Startverteilung") als Subskript bei der Wahrscheinlichkeit P.

Also insbesondere:

$$P_{\rho}(X_0 = a_0) = \rho(a_0).$$

Die Multiplikationsregel ergibt:

$$\mathbf{P}_{\rho}(X_0 = a_0, \dots, X_n = a_n)$$

= $\rho(a_0)P(a_0, a_1) \cdots P(a_{n-1}, a_n)$

Startet die Kette in $a \in S$, dann ist ρ die auf a konzentrierte Verteilung (notiert als $\rho = \delta_a$).

Statt \mathbf{P}_{δ_a} schreibt man auch \mathbf{P}_a und erhält

$$P_a(X_0 = a) = 1,$$

$$P_a(X_1 = a_1, \dots, X_n = a_n) = P(a, a_1) \cdots P(a_{n-1}, a_n)$$
.

Beispiele für Markovketten

(Buch S. 98)

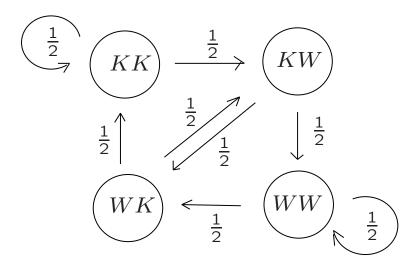
Beispiel 1:

Muster der Länge 2 beim fairen Münzwurf

 Z_0, Z_1, \ldots unabhängig und uniform verteilt auf $\{K, W\}$,

$$X_n := (Z_n, Z_{n+1}), \quad n = 0, 1, 2, \dots$$

Graph der Übergangswahrscheinlichkeiten:



Beispiel 2:

(p,q)-Irrfahrt auf \mathbb{Z} :

Sei
$$p \in [0, 1], q := 1 - p, S := \mathbb{Z}$$

 $P(k, k + 1) := p, P(k, k - 1) := q$

Für die Markovkette X mit Übergangsmatrix P und Start in a ist wegen der Multiplikationsregel (X_0, X_1, \ldots, X_n) so verteilt wie $(a, a + Z_1, \ldots, a + Z_1 + \cdots + Z_n)$, wobei Z_1, Z_2, \ldots unabhängig sind mit $P(Z_i = 1) = p$, $P(Z_i = -1) = q$.

Daraus sieht man sofort:

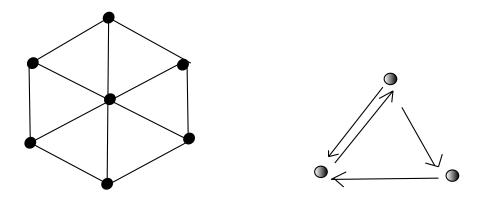
$$\mathbf{E}_a[X_n] = \mathbf{E}[a + Z_1 + \dots + Z_n] = a + n(p - q),$$

 $\mathbf{Var}_a[X_n] = \mathbf{Var}[a + Z_1 + \dots + Z_n] = 4npq.$

Beispiel 3:

Einfache Irrfahrt

auf einem (ungerichteten oder gerichteten) Graphen



S := die Menge der Knoten.

Der nächste Schritt erfolgt jeweils zu einem rein zufällig ausgewählten Nachbarn.

Beispiel 4:

Die Pólya-Urne als Markovkette auf \mathbb{N}^2

$$S = \{(r, b) : r, b \in \mathbb{N}\} = \mathbb{N}^2$$

$$P((r,b),(r+1,b)) := \frac{r}{r+b},$$

$$P((r,b),(r,b+1)) := \frac{b}{r+b}$$
.

Das modelliert dieselbe Situation wie in Vorlesung 8b2, allerdings "sparsamer":

als aktueller Zustand wird nicht der gesamte bisherige Pfad, sondern nur die Anzahl der roten und blauen Kugeln in der Urne mitgeführt